A metric tensor approach to data assimilation with adaptive moving meshes

نویسندگان

چکیده

Adaptive moving spatial meshes are useful for solving physical models given by time-dependent partial differentialequations. However, special consideration must be when combining adaptive meshing procedures with ensemble-based data assimilation (DA) techniques. In particular, we focus on the case where each ensemble member evolvesindependently upon its own mesh and is interpolated to a common DA update. This paper outlines aframework develop reference using locations of observations metric tensors (MTs)or monitor functions that define members. We spatiallocalization scheme based tensor (MT localization). also explore how tech-niques can control inform placement points concentrate near location observations, reducingthe error observation interpolation. especially beneficial have in wouldotherwise sparse discretization. illustrate utility our results discontinuous Galerkin(DG) approximations 1D 2D inviscid Burgers equations. The numerical show MT localizationscheme compares favorably standard Gaspari-Cohn localization problems observationsare sparse, choice has direct impact performance. demonstratethe advantage DG-based interpolation over linear equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling atmospheric flows with adaptive moving meshes

To better accommodate the highly disparate length scales encountered in geophysical flows, we have extended EULAG with a solution-adaptive moving mesh capability [1]. The development builds on [2], where the authors set forth a time-dependent curvilinear coordinate formulation of the governing PDEs to enable dynamic mesh adaptivity in EULAG. Here, the anelastic flux-form dynamical core of EULAG...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A Forward Approach to Numerical Data Assimilation

Variational data assimilation problems are concerned with computing unknown initial values for the simulation and prediction of natural phenomena, most notably in weather prediction, and are usually solved via an ill-posed optimal control problem for the initial state at the time of the first available measurements. An alternative “forward” approach focuses on computation of the final state aft...

متن کامل

A Data Assimilation Approach to Coefficient Identification

The thermal conductivity properties of a material can be determined experimentally by using temperature measurements taken at specified locations inside the material. We examine a situation where the properties of a (previously known) material changed locally. Mathematically we aim to find the coefficient k(x) in the stationary heat equation (kTx)x = 0; under the assumption that the function k(...

متن کامل

A Bayesian Approach to Data Assimilation

Data assimilation is formulated in a Bayesian context. This leads to a sampling problem in the space of continuous time paths. By writing down a density in path space, and conditioning on observations, it is possible to define a range of Markov Chain Monte Carlo (MCMC) methods which sample from the desired distribution in path space, and thereby solve the data assimilation problem. The basic bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2022

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2022.111407